11 research outputs found

    Self-duality of bounded monotone boolean functions and related problems

    Get PDF
    AbstractIn this paper we examine the problem of determining the self-duality of a monotone boolean function in disjunctive normal form (DNF). We show that the self-duality of monotone boolean functions with n disjuncts such that each disjunct has at most k literals can be determined in O(2k2k2n) time. This implies an O(n2logn) algorithm for determining the self-duality of logn-DNF functions. We also consider the version where any two disjuncts have at most c literals in common. For this case we give an O(n4(c+1)) algorithm for determining self-duality

    On a class of covering problems with variable capacities in wireless networks

    Get PDF
    We consider the problem of allocating clients to base stations in wireless networks. Two design decisions are the location of the base stations, and the power levels of the base stations. We model the interference, due to the increased power usage resulting in greater serving radius, as capacities that are non-increasing with respect to the covering radius. Clients have demands that are not necessarily uniform and the capacity of a facility limits the total demand that can be served by the facility. We consider three models. In the first model, the location of the base stations and the clients are fixed, and the problem is to determine the serving radius for each base station so as to serve a set of clients with maximum total profit subject to the capacity constraints of the base stations. In the second model, each client has an associated demand in addition to its profit. A fixed number of facilities have to be opened from a candidate set of locations. The goal is to serve clients so as to maximize the profit subject to the capacity constraints. In the third model, the location and the serving radius of the base stations are to be determined. There are costs associated with opening the base stations, and the goal is to open a set of base stations of minimum total cost so as to serve the entire demand subject to the capacity constraints at the base stations. We show that for the first model the problem is NP-complete even when there are only two choices for the serving radius, and the capacities are 1, 2. For the second model, we give a 1/2 approximation algorithm. For the third model, we give a column generation procedure for solving the standard linear programming model, and a randomized rounding procedure. We establish the efficacy of the column generation based rounding scheme on randomly generated instances

    FITTING PROTEIN CHAINS TO CUBIC LATTICE IS NP-COMPLETE

    No full text

    Berge's theorem for the maximum charge problem

    No full text
    In 1957 Berge [C. Berge, Two theorems in graph theory, Proceedings of the National Academy of Sciences 43 (1957) 842-844] established that a matching is maximum if and only if there are no augmenting paths in the graph. In this paper we prove Berge's result for a generalization of the matching problem-the maximum charge problem with capacity constraints. We show that a charge is maximum if and only if there is no alternating path, or lasso, along which the charge can be augmented
    corecore